Student Versus Industry: Non-Agreement in the MBA Curriculum Content

Vicente E. Montaño
Professional Schools, Faculty, University of Mindanao, Philippines

Glenndon Sobrejuanite
College of Business Administration Education, Faculty, University of Mindanao, Philippines

Abstract:
This study intended to measure the level of non-agreement in the perceived MBA curriculum content between students and industry. Generally, the MBA curriculum content had a moderate non-agreement between students and industry. Specifically, wide non-agreement existed in consulting and manufacturing, while moderate non-agreement existed in finance/accounting. Lastly, a narrow non-agreement in technology and product/services existed. The Bland and Altman Agreement Test revealed non-agreement in the MBA curriculum content between the students and industry in consulting, finance and accounting, technology, manufacturing, products, and services.

Keywords: MBA curriculum, Student-industry agreement, Bland-Altman.

Introduction
The MBA remained popular, with 96 percent of employers admitting that business school graduates create value for their organization. In the previous year, 80 percent of surveyed employers planned to hire MBA graduates, with 78 percent expressing their plan to hire more compared to 2016 and prioritized recruiting MBA graduates. Indeed, employers' preference for MBA graduates focused on their belief that MBAs provide more value to an organization (Hutton, 2017).

However, a noticeable misalignment existed between the competencies required for managerial effectiveness and course content in the MBA program. The pervasiveness of misalignment was traceable to the MBA learning goals and vital managerial skills (Costigan & Brink, 2015). Hence business schools needed to be faster in modifying their curriculum to prepare students for successful management practice. There was rising concern about over-increasing quantitative orientation in most MBA programs over managerial and behavioral skills education. Successful business executives recognized that managerial advancement skills were critical to their success. The necessary skills not integrated into the business school's curriculum were seemingly traceable to the inherent impediments to curriculum change. Over many years the irrelevance of the MBA curriculum was recognized (Laud & Johnson, 2013).

Based on a survey, the industry finds hiring a business graduate with the right skills difficult. More than a quarter of industry responses showed that the five most essential skills needed in the MBA subjects are soft skills, the capacity to work with people, finance, and the market.
Employers in specific industries such as oil and gas, civil engineering, and transport believed that business schools do not teach the right skills (Moules & Nilsson, 2017).

Few business schools started addressing soft skills. Wilfrid Laurier University’s MBA program director admitted that personalities and capabilities, on top of technical skills, differentiate students. Therefore, they designed a curriculum focused on business skills, communication skills, and team cooperation (Bitti, 2012). An MBA degree alone cannot help people become excellent employees. People reach top positions even without an advanced degree but due to their skills as an employee (Rogers, 2012). Current or former senior business executives identified the value added by an MBA degree, deficiencies, weaknesses, and unmet needs in four selected areas: financial services, consulting, multinational corporations, and technology (Datar et al., 2010).

The most compelling evidence of MBA popularity was the increasing number of business students seeking graduate education leverage to help them secure a better position (Roche et al., 2013). The gap between business education and industry was traceable to the undergraduate accounting and finance courses, which lacked focus. Since undergraduate education refused to offer an integrated finance and accounting program, they responded by merely offering MBA programs. (Siegel, Sorensen, Klammer, & Richtermeyer, 2010). An MBA accounting class attending a blended learning, online delivery, and meeting in the classroom significantly indicated a steady improvement in analytical skills compared with a traditional in-class section (Chen & Jones, 2007).

Designing an MBA program that meets industry technology’s needs faces some challenges. Due to more profound and broader topics in services or manufacturing, several schools decided to run two learning tracks, traditional classroom subjects and activities outside the classroom (Doria et al., 2003). Recognizing the escalating criticism that the MBA curriculum is irrelevant to the need of the industry (Rubin & Dierdorff, 2009), this study investigated the possible significant curriculum gap existing between the student’s perceived learning and teaching and Industry’s perceived skills among MBA students in the following areas: consulting, finance and accounting, technology, manufacturing, production, and services.

Materials and Methods

This study used the Bland-Altman (B&A) plot to determine the agreement (Bland & Altman, 1999) between the students and industry regarding the following: consulting, finance and accounting, technology and manufacturing, products and services. The B&A method quantifies agreement between the students and industry through graphical limits of understanding. The statistical limits were calculated using the mean and statistical deviations of the difference between the students and the industry. The study used the adopted GMAC Recruiter's Survey, which listed skills or traits employers look for in MBA candidates (Kamat, 2017). The instrument was contextualized for students and industry to assess possible non-agreement through testing agreement in learning and teaching in the MBA curriculum. Analysis of agreement was on the following: the presence of fitting with company culture, leadership potential, making an impact, working and building strong teams, and using data to tell story topics in consulting, finance and accounting, technology, manufacturing, products, and services.

Results

Generally, students believed that a very high level (M = 4.33) of consulting was present in the curriculum, while the industry assessed that the current business curriculum has a very high (M = 4.61). A wide gap (0.28) existed between students and industry. Graduate students believed that the very high consulting content in the graduate program fits with their adaptability (M = 4.53); making an impact (M = 4.40), strong business ethics (M = 4.33), and working in and
building strong teams. On the other hand, the industry believed that consulting in the business curriculum was very high among the following: adaptability (M = 4.71), business ethics, working in and building strong teams (M = 4.64), and making an impact.

Table 1. Student and Industry Rating, Non-agreement, and Descriptive Equivalents

<table>
<thead>
<tr>
<th>Item</th>
<th>Student Rating</th>
<th>Industry Rating</th>
<th>Gap</th>
<th>Descriptive Equivalent</th>
<th>Non-agreement Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting</td>
<td>4.33</td>
<td>4.61</td>
<td>0.28</td>
<td>Very High</td>
<td>Wide</td>
</tr>
<tr>
<td>Finance/Accounting</td>
<td>4.35</td>
<td>4.49</td>
<td>0.14</td>
<td>Very High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Technology</td>
<td>4.44</td>
<td>4.46</td>
<td>0.02</td>
<td>Very High</td>
<td>Narrow</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4.23</td>
<td>4.47</td>
<td>0.24</td>
<td>Very High</td>
<td>Wide</td>
</tr>
<tr>
<td>Products/Services</td>
<td>4.52</td>
<td>4.60</td>
<td>0.08</td>
<td>Very High</td>
<td>Narrow</td>
</tr>
<tr>
<td>Overall</td>
<td>4.37</td>
<td>4.53</td>
<td>0.15</td>
<td>Very High</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Overall, students believed that high levels (M = 4.44) of technology courses were present in the curriculum. Similarly, the industry assessed that the presence of technology in the curriculum was very high (M = 4.46). There was a narrow gap (0.02) between students and industry. Graduate students believed that the very high technology content in the graduate program highly promotes working in and building strong teams (M = 4.53); company culture (M = 4.47); leadership potential (M = 4.40), and using data to tell a story (M = 4.40).

The industry believed that the technology topics in the business curriculum were very high among the following: making an impact (M = 4.57); working in and building a strong team (M = 4.57); using data to tell a story (M = 4.43); fit with company culture (M = 4.43) and leadership potential (M = 4.43). Generally, students believed that a very high level (M = 4.23) of manufacturing topics was present in the curriculum. At the same time, the industry assessed that the presence of producing topics in the curriculum has very high (M = 4.47). A wide gap (0.24) existed between students and industry. Graduate students believed that the very high manufacturing content in the graduate program highly promotes working in and building strong teams and using data to tell a story (M = 4.60), leadership potential and making an impact (M = 4.53) and fit with company culture (M = 4.33).

Further, the industry believed that the products/services topics in the business curriculum were very high among the following: leadership potential (M = 4.71); fit company culture (M = 4.57); working in and building strong teams (M = 4.64); leadership potential and making an impact (M = 4.53).

Table 2 shows the correlation coefficient between the students and industry was 0.323787 indicating non-association between the two measurements. Since the objective was to determine the agreement between the students and industry, the mean difference (d) at -0.15238 was computed. It demonstrated that the mean...
difference was not zero, which showed that, on average, the industry measures 0.15238 more than the students. Before plotting the B&A, a statistical test was used to evaluate the normal distribution using the Shapiro-Wilk test for students (W =0.94; p>0.05) and industry (W =0.92; p>0.05), demonstrating that the data were normally distributed (Shapiro & Wilk, 1965). The B&A plotted in Figure 1 represented the difference between the students and the industry. The mean difference (d) of -0.15238 is represented by the gap between the x-axis and parallel lines to the x-axis. A positive trend was evident between the student and industry.

Table 2. Bland and Altman Agreement Test between Student and Industry

<table>
<thead>
<tr>
<th>r</th>
<th>0.327194</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>25</td>
</tr>
<tr>
<td>mean d (d)</td>
<td>-0.15238</td>
</tr>
<tr>
<td>Sd</td>
<td>0.150886</td>
</tr>
<tr>
<td>alpha</td>
<td>0.05</td>
</tr>
<tr>
<td>lower</td>
<td>-0.44811</td>
</tr>
<tr>
<td>upper</td>
<td>0.143349</td>
</tr>
</tbody>
</table>

The negative mean difference seemed to be due to the data being far from each other. An agreement test between the student and industry measure was possible by visually examining the plot. Expectedly, most differences lie between -2s and +2s or at 95 percent. The lowest and the highest limits of agreement were computed at -0.44811 and 0.143349. Inspecting Figure 1 showed that no points breached this confidence interval. However, it was expected points to cluster around the mean of difference (d) = -0.15238, and within the limits of agreement, as shown in the figure, only one point almost breached the lowest limit. Nonetheless, two standard deviation range of difference between students and industry was considered high (Macfarlane & Wu, 2013), indicating that there was non-agreement in learning and teaching between the students and industry in the level of consulting, finance and accounting, technology, and manufacturing, products, and services.

Discussion

Both students and industry identified adaptability as necessary in a business curriculum, contributing to the impetus of professional learning (Zanko et al., 2011). The ability of students to be adaptable in consulting was attributed to such importance, which the school administrators believed helped reinvent business models (Weinstein & Barrett, 2007).

Specifically, a gap in the curriculum existed in the cross-cultural business (Sims & Brinkmann, 2003). Ideally, business culture should be thoroughly discussed in an ethics course. The present business courses lack discussion on sensitivity and competence topics in the theory of business culture (Sims, 2002).

Currently, the business curriculum implemented presents efficient solutions. It develops the ability among students to effectively assimilate team-building skills, which provide the capacity to confront business issues and work in teams (Terry, 2007). As a result of embedded team enrichment, the finance course offered "career and technical education," which included team leadership roles (Way & Holden, 2009).

Students expressed that the finance course provided topics on leadership potential, proof that young graduate students find the learning opportunity allowed them to interact with more open-minded colleagues who helped them develop a leadership model (Gurdjian et al., 2014). Indeed, sustainable profitability and above-average financial returns were the
characteristics of successful companies characterized by sustainable profitability (Cameron & Quinn, 2011).

Equally important in the industry was a finance curriculum that could make an impact. There were two areas that the sector wanted the effect to manifest: personal finance management (Mandell & Klein, 2009) and understanding of the finance industry (Corpataux et al., 2009). Undoubtedly, students’ performance in finance courses is directly linked between financing and investment (Chava & Roberts, 2008). Early on, the industry identified external and internal influences such as people and culture that regularly changed the finance landscape, and it was the reason for a strong management team (Royal, 2003). Teams given greater finance capacity were more likely to recognize business opportunities in a financial context (Dimov et al., 2007).

Presently, the technology used blended mix topics in business courses. Most instructors focused on networks and infrastructure in several business topics (Baltzan, 2012). Mainly, there was an increasing role information technology played in the business. Most business schools offer information systems as part of the course (Navarro, 2008). Students wanted interactive technology in their business courses (Eastman et al., 2011). Among the most appealing techniques students wanted in technology was business gaming which they considered an innovative and cutting edged technology (Faria et al., 2009).

Acquiring the appropriate technological valuable competency in the business course was often enhanced through computer business process simulations (Ezziane, 2007). New business courses such as global business require a necessary framework, particularly technology, to aid in delivering sustainability in the business course (Marshall & Harry, 2005). For business schools to offer a better course, there is a need for closer consultation with the industry (Cordano et al., 2003).

Small business management courses became popular that a prestigious business school published a casebook on Small, Family Manufacturing Business (Katz, 2003). Also, students reacted favorably to small manufacturing business topics integrated into business courses discussing the production and accounting processes. Some business schools considered the industry’s need by adding simulation techniques (Shannon et al., 2010).

Since service was more difficult than manufacturing, the optimal solution involved several traditional functional areas. Unfortunately, most business school curricula reflected the old organizational structure with little or limited coordination among departments. Admittedly, developing a service management curriculum is tough (Davis & Berdrow, 2008).

Gradually, the MBA courses using the old business model of company culture could not bridge the gap between the students and industry needs. Business schools were increasingly criticized after the global financial crisis in 2007 for emphasizing more management-related courses than accounting and finance (Rasche et al., 2013). Over time the industry gradually recruited people with specific functional expertise, such as accounting and finance (Rynes et al., 2003). The disparity between the business school and industry was evident among candidates applying for business jobs. Business schools must align their curriculum with the 140 specific skills the industry requires for applicants in any business position (David et al., 2011).

The MBA program lacked topics on managing logistics and technology (Rubin & Dierdorff, 2009). Increasingly, students were choosing an MBA degree to support their need to learn specific knowledge, skills, and abilities, including various organizational functions, including manufacturing (Milhauser & Rahschulte, 2010).

Conclusion

Both the student and the industry assessed very high the learning and teaching content in the MBA curriculum, specifically topics on company culture, leadership potential, making an impact, working and building strong teams, and using data to tell stories topics in the areas of
consulting, finance and accounting, technology, manufacturing, products, and services. Generally, there was a moderate gap between students and industry. A wider gap existed in the consulting and manufacturing areas. Although both the student and industry rated all areas very high, non-agreement still existed between them on the learning and teaching.

Acknowledgment

We thank the Research and Publication Center (RPC) for supporting this research.

Conflict of Interests

No conflict of interest.

References

Moules, J. and Nilsson, P. (2017) What employers want from MBA graduates — and what they don’t. *Financial Times.* Retrieved from https://www.ft.com/content/3c380c00-80fc-11e7-94e2-c5b903247afdd

